NEWEA Operations Challenge Process Control Event 2022

Team Name:

Team Number:

Team Captain:

Written Test points awarded:

MC points awarded:

Simulator points awarded:

Total Event Points:

Simulator - Computer

9 total questions 50 to 300 points per question 1000 max points available

Multiple Choice - Computer 48 total questions 10 to 20 points per question 720 max points available

Multiple Choice Math - Pages 2 - 5 (4)

20 total questions 40 to 60 full credit points per question 50% partial credit if math is correct but answer is incorrect 0 points is work is not shown 1000 max points available

Process Scenarios - Pages 6 - 26 (21)

17 total questions

100 full credit points per question

50% partial credit if math is correct but answer is incorrect

0 points is work is not shown

1700 max points available

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle	rcle the letter coresponding to the answer provided for for each question		For graders use only			
#	question	(Choices		shown=20 p ct+work=40 p	
	What is the loading BOD loading rate to a WWTF if the influent BOD is 250 mg/l and the the flow is 450,000 gpd?	Α	1055 lbs/day	correct	work?	total
1		В	938 lbs/Day			
	.450 * 250 * 8.34 = 938 lbs/day	с	112 lbs/day		В	
		D	555 lbs/day			
	What is the percent removal of a primary clarifier if the raw TSS is 210 ppm, the primary EFF TSS is 39 ppm, and the final EFF TSS is 4.5 ppm?	Α	97.80%	correct	work?	total
2		В	18.60%			
	((210-39) / 210) * 100 = 81.4%	с	81.40%		с	
		D	55.20%			
	How many million gallons does a circular tank that is 120 ft in diameter and 16 ft deep hold?	Α	5.41 MG	correct	work?	total
3		В	0.08 MG			
	(60 * 60 * 3.14 *16 * 7.48) / 1,000,000 = 1.35 MG		0.18 MG		D	
	(00 00 5.14 10 7.46)7 1,000,000 - 1.55 MG	D	1.35 MG			
	What does a sludge that is 2% solids equal in ppm?	Α	20,000 ppm	correct	work?	total
4		В	2,000 ppm			
	2 * 10,000 = 20,000 ppm	с	200,000 ppm		А	
		D	200 ppm			
	What is the chlorine demand if the influent contact basin is dosed at 3 mg/l and the effluent contains 1.2 mg/l?	Α	4.2 mg/l	correct	work?	total
5		В	1.8 mg/l			
	3 - 1.2 = 1.8 mg/l	с	3 mg/l		В	
		D	1.2 mg/l			

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle	ircle the letter coresponding to the answer provided for for each question			_	For graders use only			
#	question	C	Choices		shown=20 p ct+work=40 p			
	Calculate the sludge volume index if the 30 min settling time is 210 and the MLSS is 2800 mg/l.	Α	250	correct	work?	total		
6		В	85					
	210 * 1000 / 2800 = 75	С	75		с			
		D	200					
	Calculate the BOD from the following: Volume = 15 ml	Α	122 mg/l	correct	work?	total		
7	Initial DO = 9.2 mg/l Final DO = 3.1 mg/l	В	152 mg/l					
Í	(9.2 - 3.1) / 15 * 300 = 122 mg/l	С	75 mg/l		А			
	(9.2 - 3.1) / 13 - 300 - 122 mg/i	D	132 mg/l					
	If a pump at 100% efficient can produce 27 PSI, how many vertical feet can it pump if it is 85% efficient?	Α	62 ft	correct	work?	total		
8		В	33 ft					
0	27 * 2.31 *.85 = 53 Ft	С	11 ft		D			
	27 2.31 .03 - 33 Ft	D	53 Ft					
	If a lift station pumps 2.7 MGD and the pumps run for 10.5 hours per day, what is the flow rate for the pump in GPM?	Α	3,952 gpm	correct	work?	total		
9		В	4,286 gpm					
5	(2.7 MGD * 1,000,000) / (10.5 H * 60 m/h)	С	2,572 gpm		В			
		D	3642 gpm					
	What HP motor is needed to pump 1,500 gpm at 39 ft of head?	Α	10 HP	correct	work?	total		
10		В	15 HP					
10	1,500 * 39 / 3960 = 15 HP	С	12 HP		В			
	1,300 × 39 / 3900 – 13 HP	D	50 HP					

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question For graders use only work shown=30 points Choices question correct+work=60 points A WWTF treats an annual average flow of 2.3 MGD. If the average work? Δ 21.7% correct total sewer user produces 100 gpd per person and the town has 18,000 people, what percentage of the treated flow is assumed to be I/I? 18.5% В 11 18,000 * 100 = 1,800,000 gpd 42.1% С ((2.3 MGD - 1.8 MGD) / 2.3 MGD) * 100 = 21.7% Α D 78.2% If a stabilization pond is 30 acres, how long will it take to raise the 14.7 Days Α correct work? total level by 3 feet at a flow rate of 0.35 MGD? В 10.2 Davs 12 (30 * 43,560 * 3 * 7.48) / 1,000,000 = 29.3 MG С 83.7 Davs 29.3 MG / 0.35 MGD = 83.7 Days С 97.6 Days D What is the velocity in ft/sec in an 8" force main carrying a flow of 10.51 ft/sec Α correct work? total 1250 gpm? В 4.97 ft/sec 13 1250 / 7.48 / 60 = 2.78 ft3/sec С 6.54 ft/sec 8 / 12 = .67 ft D 0.33 * 0.33 * 3.14 = 0.35 ft2 D 7.94 ft/sec 2.78 / 0.34 = 7.94 ft/sec 13 What is the organic loading rate in lbs/1000 ft on a 10 ft deep, Α lbs/d/1,000 correct work? total 80 ft diameter trickling filter if the influent flow is 2.2 MGD, ft2 71 the BOD is 195, and the media contains 5.5 ft2 per ft3? lbs/d/1,000 В ft2 14 45 (40 * 40 * 3.14 * 10 * 5.5) / 1,000 = 276 1,000 ft/2 С lbs/d/1,000 2.2 * 195 * 8.34 = 3578 Lbs/dav Α ft2 56 3,578 / 276 = 13 lbs/day/1,000 ft2 lbs/d/1,000 D ft2 A WWTF plant treats 2 MGD with 50 lbs/day of sodium Α 2.2 mg/l correct work? total hypochlorite. If the effluent Cl2 residual is 1.2 mg/l, what is the demand? В 1.8 mg/l 15 50/2/8.34 = 3 mg/lС 48.8 mg/l 3 mg/l - 1.2 mg/l = 1.8 mg/l В D 3.0 mg/l

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle	If the answer is correct. the letter coresponding to the answer provided for for each que	estion		For grade	rs use onl	y
#	question	(Choices		shown=30 p ct+work=60 p	
	What percent capacity of a 8 ft stick of 12" pipe is an 12 ft stick of 8" pipe?	Α	100%	correct	work?	total
16		В	50%			
	0.33 * 0.33 * 3.14 * 12 = 4.1 ft3 in 8" pipe 0.5 * 0.5 * 3.14 * 8 = 6.3 ft3 in 12" pipe (4.1 / 6.3) * 100 = 65%		65%		С	
			112%			
	1,500 gpm is needed at 17 psi. Motor eff = 91%, pump eff = 89%. What HP motor is needed?	Α	18 HP	correct	work?	total
17		В	15 HP			
17	17 PSI * 2.31 = 39 ft 1,500 * 39 / (3960 * 0.91 * 0.89) = 18 HP	С	12 HP		А	
		D	25 HP			
4.0	What is the detentions time of a 60 ft circular clarifier with a sidewall depth of 11 ft and a center depth of 16 ft if the flow is	Α	8 hours	correct	work?	total
	1.6 MGD?	В	4 hours			
18	30 * 30 *3.14 * 11 = 31,086 ft3 30 * 30 * 3.14 * 0.33 * 5 = 4,663 ft3	С	3 hours		В	
	(31,086 + 4,663) * 7.48 / 1,000,000 = 0.267 MG 0.267 MG / 1.6 MGD * 24 = 4 hours	D	6 hours			
	An aeration tank is 1.2 MG in volume and has an MLSS concentration of 2,600 mg/L. If the WAS concentration is	Α	16,752 gpd	correct	work?	total
19	2.2%, how many gallons need to be wasted daily to achieve an MRCT of 8 days?	В	19,442 gpd			
15	1.2 * 2,600 * 8.34 = 26,021 lbs 26,021 / 8 days = 3,253 lbs/day	С	18,455 gdp		D	
	3,253 / 0.022 / 8.34 = 17,729 gpd	D	17,729 gpd			
	A WWTF has two circular secondary clarifiers. A 65ft and an 85 ft. What is the solids loading rate if the flow is 833 gpm and	Α	3.0 lb/d/ft2	correct	work?	total
20	the MLSS is 0.25%?	В	0.8 lb/d/ft2			
20	(32.5 * 32.5 *3.14) + (42.5 * 42.5 *3.14) = 8,988 ft2 833 * 1440 * 0.0025 * 8.34 = 25,009 lbs/day	С	2.8 lb/d/ft2		С	
	25,009 / 8,988 = 2.8 days	D	1.2 lb/d/ft2	R		

Process Scenario 1: Activated Sludge

You must show your work to receive full credit even if the answer is correct

Operational Data

	Influent Avg:	Permit Limit:	Aeration	Data	Clarifier	Data
Flow	2.98 MGD	6.5 MGD	# of Tanks	2	# of Tanks	2
Temp	15 Deg C	NA	Length	120 Ft	Diameter	85 Ft
BOD	215 mg/l	50 mg/l	Width	40 Ft	Depth	16 Ft
TSS	210 mg/l	50 mg/l	Depth	16 Ft	Blanket Dept	2 Ft
NH3	26 mg/l	5 mg/l	MLSS	2650 mg/l	RAS Conc	6500 mg/l
рН	7.3 s.u.	6.0 - 8.0 s.u.	MLVSS	77%	WAS Conc	2.10%
Alkalinity	150 mg/l	NA	30 Min Sett	210	WAS Rate	32,000 gpd

	Based on the provided data, calculate the following. Enter numerical answers. (Must get all			For Grade	ers Only
	three correct and show work for full credit)			Points 50/100	Answer
	Total Solids Inventory	TSI	34,591		
	F/M	151	54,551		
	MRCT (assume effluent TSS is at permit limit)	F/M	0.27		
		,		4	
		MCRT	5 Days		
	TSI:			-	
	(2 * 120 * 40 * 16 * 7.48) / 1,000,000 = 1.149 MG * 2650 * 8.34 = 25,392 lbs				
	$(2 \times 42.5 \times 42.5 \times 3.14 \times 2 \times 7.48) / 1,000,000 = 0.17 MG \times 6500 \times 8.34 = 9,199 lbs$				
	25,392 + 9,199 = 34,591 lbs				
	F/M:				
1	(2.98 * 215 * 8.34) / (25,392 * 0.77) = 0.27				
	MCRT:				
	34,591 / ((32,000 * 0.021 * 8.34) + (2.98 * 50 * 8.34)) = 5 days				

	The operator has determined that the reason why the efflunet TSS quality is poor and the facility is unable to meet it					
	effluent requirements for NH3 is that the MCRT is too low. The operator determines that adj	usting the	MCRT to meet	Points 50/100	Answer	
	the requirement for nitrification will also improve the TSS and assumes the new effluent TSS value will be 10 mg/l. If the facility runs wasting at a consistant speed 24/7, what flow rate should the WAS pump flow rate be set at to achieve a 20 day MCRT?					
		А	8450 GPM			
		В	6 GPM			
		С	12 GPM			
		D	32 GPM			
2	MCRT for nitrification at 15 Deg C is 20 days. 34,591 / 20 = 1,729 lbs/day 1,729 - (2.98 * 10 * 8.34) = 1480 lbs/day WAS 1,480 / 0.021 / 8.34 / 1440 = 6 gpm					

to get the NH3 down to the limit?			
to get the NH3 down to the limit? 7.14 parts alkalinity per part NH3 26 - 5 = 21 (21 * 7.14) + 50 - 150 = 50 mg/l 50 * 2.98 * 8.34 = 1242 lbs/day	A B C D	500 lbs/day 755 lbs/day 1250 lbs/day 2550 lbs/day	

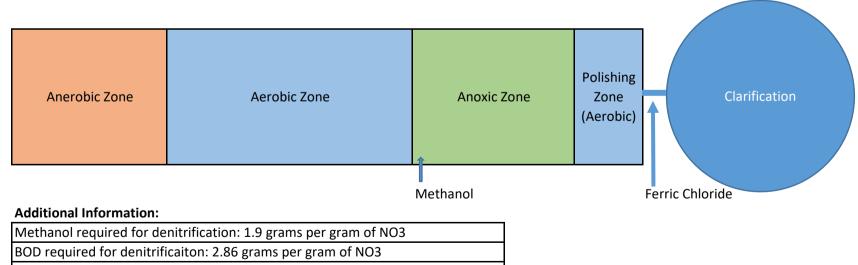
	Increasing the target MCRT has improved nitrification, but the increase in total system lbs has created a new challenge					
	when it comes to settling solids in the clarifier durring periods of high flow caused by rain events. The facility is now					
	violating its permit for TSS every time it rains. At an MRCT of 20 days, the MLSS has increased	0.				
	clarifier blanket has rissen to 4 ft (at the same concentration). The facility is concidering instal			D		
	introduce magnetite into the process to increase settling rates. The magnetite will increase the					
	solids by 7%, but 95% will be recovered from the waste stream before dewatering. How many	/ more lb	s of solids will			
	have to be dewatered yearly with the biomag system?					
		Α	2,290 lbs			
		В	5,550 lbs			
		С	7,540 lbs			
		D	3,650 lbs			
4	(2 * 120 * 40 * 16 * 7.48) / 1,000,000 = 1.149 MG * 3,800 * 8.34 = 36,411 lbs (2 * 42.5 * 42.5 * 3.14 * 4 * 7.48) / 1,000,000 = 0.17 MG * 6500 * 8.34 = 18,398 lbs					
4						
	36,411 + 18,398 = 54,409 lbs					
	WAS Lbs:					
	54,409 / 20 = 2,740 lbs/day without biomag					
	2,740 * 0.07 = 191 lbs					
	191 * 0.05 = 9.6 lbs					
	2740 + 9.6 = 2750 lbs/day with biomag					
	(2,750 - 2,740) * 365 = 3,650 lbs					

Operational Data

The Lewiston Auburn Water Pollution Control Authority operates two (2) mesophilic anaerobic digesters, each with a volume of 92,245 cubic feet. On average, the facility pumps 50,000 gallons per day of combined Primary and Thickened Waste Activated Sludge (TWAS) with a 5.5% solids concentration and 70% Volatile Solids. The digester feed solids average 212 mg/l of Volatile Acids and 1255 mg/l of Alkalinity. The facility averages 50% Volatile Solids destruction, and produces 12.5 cubic feet of biogas for every pound of Volatile Solids it destroys. The biogas fuels two (2) Combined Heating & Power (CHP) units capable of producing 230 kW of power. The engines require 1 Cubic Feet per Minute (CFM) of biogas for every 3-kW of power produced.

	How many average pounds of total volatile solids are pumped to the digester dail	y?		For Grad	ers Only
				Points 50/100	Answer
					D
					D
		А	22,935 lbs/day		
		В	45,870 lbs/day		
		С	18,420 lbs/day		
		D	16,055 lbs/day		
		E	7,868 lbs/day		
	50,000 gals/day x 8.34 lbs/gal water x 5.5% solids = 22,935 total pounds of	solids			
1					
	22,935 total pounds of solids x 0.70 % = 16,055 pounds of volatile solids				
	22,955 total pounds of solids x 0.70 % – 16,055 pounds of volatile solids				

	What is the total detention time?			For Grad	ers Only
				Points 50/100	Answer
					E
		A	13.8 days		
		В	6.5 days		
		С	10.7 days		
		D	38.5 days		
		E	27.6 days		
2	(92,245 ft3 x 2 digesters x 7.48 gallons/ft3) / 50,000 gpd = 27.6 days				
Z	(92,245 113 x 2 digesters x 7.48 galions/113) / 50,000 gpd = 27.6 days				


	What is the Volatile Acid to Alkalinity ratio, and is this acceptable?		For Grad	ers Only
			Points 50/100	Answer
				A
		A 0.16, Yes	<u> </u>	
		B 0.16, No	-	
		C 5.77, Yes		
		D 5.77, No	4	
3	212 mg/l volatile acid / 1255 mg/l Alkalinity = 0.16			
	Yes, less than 0.35 is acceptable			

	How much average biogas is produced daily?			For Grad	ers Only
				Points 50/100	Answer
					C
		A	8,027 ft3/d		
		B	200,688 ft3/d		
		C	100,344 ft3/d		
		D	300,587 ft/d		
		E	355,948 ft/d		
4	16,055 pounds of volatile solids fed x 50% destruction = 8027.50 VS pounds destroyed				
4	8027.50 VS lbs destroyed x 12.5 ft3 biogas/ lb. VS destroyed = 100,344 cubic feet biogas prod	ucod			
	8027.50 v5 lbs destroyed x 12.5 its blogas/ lb. v5 destroyed – 100,544 cubic reet blogas prou	uceu			

	What is the average kW of power that can be produced daily from the two CHP units based on the volume of gas				ers Only
	produced at the facility?			Points 50/100	Answer
					A
		A B C D E	209 kW 301,032 kW 418 kW 212,555 kW 560 kW		
	(100,344 ft3 biogas x 3 kW/CFM) / 1440 = 209 Kw				
5					

Operational	Data
--------------------	------

	Influent Avg:	Aerobic Zone Effluent:	Anoxic Zone Effluent:	Permit Limt:
Flow	6.5 MGD	6.5	6.5	10 MGD
Temp	15 Deg C	15.5 Deg C	15 Deg C	NA
BOD	215 mg/l	5.5 mg/l	5.5 mg/l	10 mg/l
TSS	210 mg/l	2,500 mg/l	5.5 mg/l	10 mg/l
Total N	37 mg/l	37 mg/l	1.5 mg/l	542 Lbs/day
ΤΚΝ	35 mg/l	1.3 mg/l	1.3 mg/l	NA
NH3	33 mg/l	0.1 mg/l	0.1 ml/l	1.0 mg/l
Total P	10 mg/l	2 mg/l	4 mg/l	55 Lbs/day
рН	7.3 s.u.	6.7 s.u.	7.2 s.u.	6.0 - 8.0 s.u.
Alkalinity	280 mg/l	30 mg/l	155 mg/l	NA

Ferric Chloride required to remove Total P: 5.2 pounds per pound of Total P

Ferric Chloride \$0.41 per pound

How many lbs/day of methanol are currently being used to to a	low many lbs/day of methanol are currently being used to to achieve the anoxic effluent nitrogen level? Assum				ers Only
NO2 levels are insignificant.				Points 50/100	Answer
					С
		А	589 lbs/day		
		В	1277 lbs/day		
		С	2265 lbs/day		
	l	D	3675 lbs/day	_	
37 mg/l TN - 1.3 mg/l TKN = 35.7 mg/l NO3					
35.7 mg/l * 1.9 mg/l = 67.8 mg/l					
67.8 mg/l * 6.5 * 8.34 = 3,675 lbs/day					

	In an attempt to reduce cost, the operator wants to install a pump to side stream a portion of the influent to use as					
	carbon source for denitrification. If a pump that operatates at 1200 gpm is installed and piped directly from the	Points 50/100	Answer			
	influent into the anoxic zone, how many lbs per day of methanol will be needed to reach the permit limit for TN at the average daily flow? Assume no changes to nitrification.					
	A 75 lbs/day					
	B 589 lbs/day					
	C 272 lbs/day					
	D 425 lbs/day					
2	542 lbs/day / 6.5 MGD / 8.34 = 10 mg/L TN in effluent 37 TN - 1.3 TKN - 10 = 25.7 mg/l NO3 to be removed 25.7 * 6.5 *8.34 = 1393 lbs/day NO3 to be removed ((1200 gpm * 1440) /1,000,000) * 215 mg/l * 8.34 = 3098 lbs/day BOD sidestream 3098 lbs BOD / 2.86 = 1083 lbs NO3 removed with BOD 1393 lbs/day - 1083 lbs/day = 310 lbs/day to remove with methanol 310 lbs/day * 1.9 = 163 lbs per day of methanol to meet permit					

	What is the dosage rate in mg/L of Ferric Chloride needed to achieve Total P permit limit at average daily flow?			For Grad	ers Only
				Points 50/100	Answer
					А
		А	15.6 mg/L		
		В	20.8 mg/L		
		С	10.4 mg/L		
		D	25.7 mg/L		
	55 lbs/day / 8.34 * 6.5 MGD = 1.0 mg/L				
3	4 mg/L - 1 mg/L = 3 mg/L Total P needs removal				
	3 mg/L * 8.34 * 6.5 MGD = 163 lbs				
	163 lbs * 5.2 = 848 lbs of Ferric needed				
	848 lbs / 8.34 * 6.5 MGD = 15.6 mg/L				

	It has been determined that adding a mixer to the anoxic zone will prevent the ph	For Graders Only			
	aerobic zone effluent and anoxic zone effluent. The cost for adding a mixer will be	What will be the mixer	Points 50/100	Answer	
	cost install pay back be in years with the reduction of ferric chloride required? Assume chemical cost stays the sam				С
		А	2.63 Years		
		В	1.95 Years		
		С	1.47 Years		
		D	1.25 Years		
4	 55 lbs/day / 8.34 * 6.5 MGD = 1.0 mg/L 4 mg/L - 1 mg/L = 3 mg/L Total P needs removal 3 mg/L * 8.34 * 6.5 MGD = 163 lbs P 163 lbs * 5.2 = 848 lbs of Ferric needed 2 mg/L - 1 mg/L = 1 mg/L Total P needs removal with mixer 1 mg/L * 8.34 * 6.5 MGD = 54 lbs P 54 lbs * 5.2 = 281 lbs of Ferric needed with mixer 848 lbs - 281 lbs = 567 lbs of Ferric saved 				
	567 lbs * 0.41 *365 = \$84,852/yr Ferric cost savings				
	\$125,000 / \$84,852 = 1.47 years				

Process Scenario 4: Effluent Filtration

You must show your work to receive full credit even if the answer is correct

Operational Data

Multi- Media Gravity Filter Information		Backwash Flow Rates		
Filter dimensions	(4) 11'-10" x 24'-0"	Water TempDegrees F	B/W Rate GPM/FT ²	
Air Scour Rate	2.5 SCFM/SQFT	50 or less	15	
Air Scour Time	120 seconds	51-55	16	
Max. Loading Rate	3500 GPD/SQFT	56-60	17	
Gravel (1" x 5/8")	3″	61-65	18.5	
Gravel (5/8" x 3/8")	3″	66-70	20	
Gravel (3/8" x 3/16")	3″	71-75	21	
Gravel (3/16" x #10)	3″	Above 75	22.5	
Silica Sand	12"			
Anthracite (1.5 g/cm3)	22"			
Effluent Temperature	10 – 20 Degrees C	1		
Backwash Water Source	Filtered Effluent	1		

on has been tasked with ordering replacement anthracite that gets lost during backwashes. After further				For Graders Only	
nvestigation it was determined that the total combined inches of anthracite media loss to be 22". Anthracite media			Points 50/100	Answe	
is sold in bags of 1.0 FT3. How many bags will Ron need to order and what v				С	
	А	488 Bags, 22.8 Tons			
	В	521 Bags, 48.6 Tons			
	С	521 Bags, 24.3 Tons			
	D	544 Bags, 26.7 Tons			
	E	544 Bags, 48.6 Tons			
11.83' * 24' * 4 tanks = 1135 ft2					
22" / 4 tanks = 5.5"					
5.5" / 12 = 0.458'					
1135 ft2 * 0.458 ft = 521 bags					
(1.5 g/cm3*16.39 cm3/in3 * 1728 in3/ft3)/454 g/lbs = 93.6 lbs/ft3					
(521 bags * 93.6 lbs/ft3)/2000 lbs/ton = 24.3 tons					

	The backwash water pumps are due for replacement and Mark has been asked to create specification for the				For Graders Only	
	replacement pumps. What will the maximum required GPM need to be when two filters are i	n backwasł	h at the same	Points 50/100	Answer	
	time?				В	
		А	8,520 GPM			
		В	11,360 GPM			
		С	5,680 GPM			
		D	4,260 GPM			
		E	12,780 GPM			
2	Max effluent temp is 20 deg c, so 20 gpm/ft2 pump needed for 66-70 deg F based on backwas 11.83' * 24' * 2 tanks = 568 ft2 568 ft2 * 20 GPM/ft2 = 11,360 GPM	sh flow rate	es chart			

Page #

• current effluent flow of 1.7 MGD. What will the online filters have for a surface loading rate at the current flow? Points 50/100 Answer E A 3063 GPD/FT ² E B 2025 GPD/FT ² C 1850 GPD/FT ² D 2560 GPD/FT ² E 1995 GPD/FT ² E 1995 GPD/FT ² E 1995 GPD/FT ² MGD * 1,000,000 = 1,700,000 GPD 83' * 24' * 3 tanks = 852 ft2 0,000 GPD / 852 ft2 = 1995 GPD/FT2	Filter #3 will need to be taken off line for service.	Amy is concerned that the remaining online filters will not handle For G	raders Only
A 3063 GPD/FT ² B 2025 GPD/FT ² C 1850 GPD/FT ² D 2560 GPD/FT ² E 1995 GPD/FT ² 83' * 24' * 3 tanks = 852 ft2	the current effluent flow of 1.7 MGD. What will	the online filters have for a surface loading rate at the current flow? Points 50,	100 Answer
B 2025 GPD/FT ² C 1850 GPD/FT ² D 2560 GPD/FT ² E 1995 GPD/FT ² E 1995 GPD/FT ² 83' * 24' * 3 tanks = 852 ft2			Е
C 1850 GPD/FT ² D 2560 GPD/FT ² E 1995 GPD/FT ² 83' * 24' * 3 tanks = 852 ft2		A 3063 GPD/FT ²	
D 2560 GPD/FT ² E 1995 GPD/FT ² 83' * 24' * 3 tanks = 852 ft2			
E 1995 GPD/FT ² MGD * 1,000,000 = 1,700,000 GPD 83' * 24' * 3 tanks = 852 ft2			
MGD * 1,000,000 = 1,700,000 GPD 83' * 24' * 3 tanks = 852 ft2			
83' * 24' * 3 tanks = 852 ft2		E 1995 GPD/FT ²	

	Filters have been requiring more backwashes with #3 filter offline, backwashes are up to three per day per filter from				ers Only
	one per day per filter. What will be the increased CF total for the day with one filter offline?			Points 50/100	Answer
					D
4	11.83' * 24' * 4 tanks = 1135 ft2 1135 ft2 * 2.5 SCFM/ft2 * 2 mins * 1 per day = 5675 CF 11.83' * 24' * 3 tanks = 852 ft2 852 ft2 * 2.5 SCFM/ft2 * 2 mins * 3 per day = 12,780 CF 12,780 CF - 5675 CF = 7105 CF increase	A B C D E	3,720 CF 5,550 CF 8,520 CF 7,100 CF 4,200 CF		